Voltage Divider Circuits

1 Introduction

This tutorial is about the basic voltage divider circuit made from two resistors connected in series to a voltage source.

Figure 1: Voltage Divider Circuit.

2 Circuit

The output of a simple voltage divider circuit is equal to:

$$
\begin{aligned}
& \mathrm{Vo1}=\mathrm{Vs} \text { *R1 / (R1 + R2) } \\
& \mathrm{Vo2}=\mathrm{Vs} \text { *R2 / (R1 + R2) }
\end{aligned}
$$

We can now calculate the output voltage of the circuit on the previous page:

$$
\begin{gathered}
\text { Vo2 }=3 \mathrm{~V} * 2.2 \text { kohms } /(1 \mathrm{kohms}+2.2 \text { kohms }) \\
=3 \mathrm{~V} * 2,200 \text { ohms } / 3,200 \text { ohms } \\
=2.0625 \mathrm{~V}
\end{gathered}
$$

Simulations show that the predicted value is very similar to plotted voltage in the graph below:

Figure 2: Voltage Divider Circuit Simulations.

Adding a third resistor will add an additional potential voltage:

$$
\begin{aligned}
& V o 1=V s * R 1 /(R 1+R 2+R 3) \\
& V o 2=V s * R 2 /(R 1+R 2+R 3) \\
& V o 3=V s * R 3 /(R 1+R 2+R 3)
\end{aligned}
$$

3 Conclusion

There are also current divider circuits when multiple resistors are connected in parallel. The voltage across those resistors will be equal. The current will be different:

$$
\begin{aligned}
& \mathrm{Io} 1=\mathrm{Vs} / \mathrm{R} 1 \\
& \mathrm{Io} 2=\mathrm{Vs} / \mathrm{R} 2 \\
& \mathrm{Io} 3=\mathrm{Vs} / \mathrm{R} 3
\end{aligned}
$$

Clark Amplayo

